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Preface

[he multi-faceted mission of the Space Shuttle necessitates

the orbiter's ability to chang,,e from one orbit to another.

Many times an orbit clhange includes a change in orbit inclin-

ation which is usually accomplished by a rocket burn in space.

The Space Shuttle Crbiter can possibly achieve changes in

orbit inclination by makinir use of tLe orbiter's airplane-

like ability in the upper atmosphere. This study examines

this possibility and compares it with the rocket maneuver in

space.

Most of the time spent on this study involved the opti-

mization of such an aerodynamic maneuver. Unfortunately, no

results from the optimization problem ensued; however, the

problem is discussed and a better problem statement is proposed

in Chapter VII.

Thanks are due to Captains William Wiesel and James Rader

for their advice concerning the system dynamics and the optimum

control problem. Captain Ray Barker was helpful in establishing

a model atmosphere. Special thanks go to my wife, Wendy, for

her expertise in editing,, and typing the final report.

Roger R. J. Harding
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Abstract

Two types of skip reentry trajectories are examined in

the 70 km to 95 km altitude region. he first is a maximum

lift-to-drag analysis which indicates that an aerodynamic

maneuver in order to change the orbit inclination is profitable

when compared to a rocket burn in space to effect the same

change in orbit inclination. The maximum changes in orbit

inclination achieved aerodynamically were approximately

.8 degrees. The second type of analysis considered the optimal

control problem for a skip reentry trajectory. The specific

problem posed was: Find the optimum angle of attack and

bank angle controls which minimize the amount of work dune

by drag for a specific change in orbit inclination. No results

were obtained from this analysis due to the problems encountered

when the optimization technique was applied to the specific

problem.

vii



OPTIMUM URBII FLANE CHANGE USINu A SKIP REENTRY TRAJECTGRY

FUR THE SPACE SHUFTLE ORbITER

I Introduction

Foreword

The Space Shuttle is a spacecraft system comprising

three main elements; two solid propellant rocket boosters,

an external tank, and the orbiter. The solid propellant

rocket boosters are expended during the boost phase of the

mission and are recovered fL'm the ocean for reuse. The

external tank remains coupled with the orbiter until after

orbit insertion; when the fuel in the external tank is

exhausted, the tank is jettisoned and reenters the earth's

atmosphere. The orbiter is capable of delivering a variety

of payloads into orbit as well as retrieving payloads for

return to earth. The orbiter can also carry supplies and

provide accomodations for up to four payload specialists

as well as the crew of three (command pilot, copilot and

mission specialist). Upon completion of orbital operations

the orbiter reenters earth's atmosphere and terminates the

mission with an airplane-like landing.

The purpose of this study is to examine the possibility

of using the orbiter's aerodynamic capabilities to change

the orbit inclination, Previously, spacecraft have changed

orbit inclination by thrusting with rockets perpendicular to

the orbital plane. Such a burn is expensive in terms of



fuel needed for the mission and therefore also expensive

in terms of added payload wei ,ht during the boost phase.

The orbiter is unique in that it has a relatively good

hypersonic lift-to-drag ratio (L/D) of approximately 2 (see

Ref 8 ). A high L/D indicates a possibility that an aero-

dynamic maneuver during a skip reentry trajectory could

provide an effective means for changing the orbit inclination.

A skip reentry maneuver involves entering the earth's

atmosphere, performing the desired aerodynamic maneuver and

"skipping" back out of the atmosphere.

Back-of-the-Envelope Calculation

The relatively high LI/D for the orbiter is the motivation

for this study. A simplified calculation of an orbit plane

change using L/D equal to 2 will follow; this calculation

assumes all motion lies in a plane and the changes in

velocity due to the aerodynamic forces are instantaneous.

A typical reentry velocity is 7200 meters/second; a loss of

300 meters/second Ls assumed to be a maximum acceptable, since

300 meters/second is the velocity deficit which can be negated

using the orbiter's maneuvering system (see Ref8).

Example

Vinitial = 7200 m/s ; Vfinal = 7200 - 300 6900 m/s

Yinitial = 0

2
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Vf inal
A;, AVLOLal

ViniLial AkVinitiali

I Using Newton's Second Law, acceleration (Forces)/mass

Ak = 300 n/s = drag'/orbiter mass

~; Ay= lift/orbiter mass

Using, these two equations,

lift/drag 2 =AW'/00 mis)

or

A;,= 600 rn/s

From the geometry of the problem,

totalA V (600 2 + 300 2Y 670 m/s

so

i = sin- y/VF

'Ihe velocity of the orbiter lies in the orbit plane,

thus the chang'e in direction of the velocity vector, 4i, is

also the change in the orbit plane. A plane change of

approximately 5 degrees can be expected from such a skip

turn maneuver according to this very rough analysis.
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Summary

This study examines a skip turn reentry maneuver in order

to effect a change in orbit inclination for the Space Shuttle

Orbiter.

Second-order parameter optimization finds optimum time

histories for the controls, which in this case are angle of

attack and bank angle. The optimization scheme finds these

controls as polynomial functions of time while minimizing a

performance index (work done by air drag). The problem is

further constrained by specified final conditions, which in

this case are maximum orbital plane change and attainment

of a specific altitude upon completion of the maneuver. The

theory for second-order parameter optimization, or suboptimal

control as the procedure is often called, is presented in

Chapter VI.

Before suboptimal trajectories can be determined, it is

necessary to have a model atmosphere, the orbiter equations

of motion, and the orbiter's aerodynamic data.

The conditions of the earth's upper atmosphere must be

suitably modelled in order to evaluate the aerodynamic forces

of lift and drag acting on the orbiter. Lift and drag are

both functions of atmospheric density, temperature, kinetic

viscosity and molecular weight; the 1962 Standard Atmosphere

provides reasonable approximations of same. The orbiter

aerodynamic data obtained from NASA is based on the '62

atmosphere; hence the 1962 Standard Atmosphere is the model

used in this study.

5-
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Solution of the optimal control problem requires the

integration of the system equations of motion from a prescribed

initial state to a final state. The equations of motion are

derived by transforming the forces acting on the orbiter

from a body-fixed reference frame to the geocentric, inertial

reference frame and then applying Newton's Second Law. The

forces acting on the orbiter are gravity, lift, and drag.

The equations of motion are thus dependent on the model

atmosphere.

The orbiter aerodynamic data necessary for this study

are the lift and drag coefficients. The coefficients are

dependent upon the atmospheric properties, the orbiter's

aerodynamic configuration (angle of attack), and the state of

the earth-orbiter system.

These three prerequisites necessary for the optimization

scheme are quite different when taken individually but become

interdependent when applied to this problem. The equations

of motion are dependent on the aerodynamic forces which in

turn are dependent on the orbiter's aerodynamic coefficients

and the model atmosphere. The orbiter aerodynamic coefficients

are also dependent on the model atmosphere and the state of

the system. The state of the system is evaluated by integrating

the equations of motion. The integration is begun by choosing

an initial state and allowing a numerical integration scheme

to propagate this initial state forward in time.

Suboptimal control requires integrating the equations

of motion using guessed polynomials for the controls. The

6



performance index and final state are recorded. The coefficients

in the control polynomials are changed slightly and the equations

of motion are integrated again using the new control polynomials.

Central differencing uses changes in both performance index and

final end conditions with respect to the change in polynomial

coefficients in order to evaluate the first and second partial

derivatives. These partial derivatives are used in suboptimal

control theory to make a better guess at the coefficients in

the control polynomials. The process is repeated until changes

in the control polynomial coefficients become very small.

For a prescribed final altitude and orbit plane change,

optimum control polynomials are found which yield the minimum

work done by drag on the orbiter.

L7



11 Model Atmosphere

Background

The aerodynamic forces acting on the Space Shuttle

Orbiter are a function of the state of the system, i.e.

altitude and velocity. Knowledge of atmospheric properties

at low density altitudes is essential for hypersonic aero-

dynamic trajectory calculations. The 1962 Standard Atmosphere

used by this study provides the necessary atmosphere properties.

The aerodynamic forces are evaluated by solving the following

equations.

Lift = V1OCLS

Drag = - V/0C0 S

where

/0 = local atmospheric density

V = free stream velocity relative to the orbiter

CL= lift coefficient

CA= drag coefficient

S = reference area

Lift and drag are dependent on atmospheric properties

in two ways: (1) directly dependent on air density, and

(2) indirectly dependent on the temperature, molecular

weight, density and kinetic viscosity used for evaluating

lift and drag coefficients. Thus an accurate model atmosphere

is essential in order to evaluate the lift and drag forces

and the resulting trajectory.

8



[he 1962 Standard Atmosphere

rhe 1962 Standard Atmosphere model is an updated version

of earlier atmospheres t.akinl, advantage of increased knowledge

and more accurate determinations of basic quantities. This

model extends to 700 Km altitude and assumes an ideal gas

devoid of moisture, water vapor, dust and obeys the perfect

gas law. Further, the '62 model is idealized to a mid-latitude

year-round mean over the range of maximum and minimum solar

activity (Ref9). Temperature variations and molecular weight

variations with altitude were obtained experimentally.

The 1962 Standard Atmosphere is used in this study for

two reasonst the Space Shuttle Orbiter aerodynamic data is

based on the '62 atmosphere, and this model atmosphere is

accurate and easy to implement in this study.

Defining Equations

Atmospheric parameters of interest in this study are

temperature, molecular weight of air, density and viscosity.

Upper atmosphere winds are also of interest; however, due to

the complexity of the winds (variations with time and position)

the model simplifies the winds to an atmosphere rotating with

the earth.

The variation of temperature, T, with altitude is taken

to be a piecewise continuous function with constant gradients,

Lm. This model atmosphere uses molecular temperature, Tm, as

the defining propertys

Tm T(M)

Molecular weight of air, M, is a constant, Mo, up to 90 km



altitude. For this altitude regime, the molecular temperature

and the temperature are equal. The interpolating function

for the molecular temperature iss

Tm = Tmb + Lm (Z - Zb)

The subscript b denotes a base altitude which is the altitude

where the local temperature gradient changes.

Values for the molecular weight of air are available

from the model atmosphere only at the base altitudes. However,

the molecular temperature accounts for the varying molecular

weight. All parameters involving molecular weight can be

expressed in terms of temperature and molecular temperature.

The derivation of the density equation uses the perfect

gas law, the standard barometric equation, and geopotential

altitude. Due to the variation of gravitational acceleration

with altitude, geopotential altitude represents a modified

altitude to account for this variation. This study assumes that

the geopotential altitude is equal to the geometric altitude.

This simplifying assumption results in a negligible five to

seven percent difference from the 1962 Standard Atmosphere

at high altitudes.

Two equations for density,/4, are derived,

/0= 10 exp - Tm b  for Lm 0

and

(1o + L (log- ( mb) for Lm I 0

Lmp Tm

10



where

we o atmospheric density at sea level

Ab/o = known ratio at the base altitudes

Q = (ASM) / (r2R)

The scale height, Q, is dependent on the local gravitational

acceleration, 4/r2 , the molecular weight of air, M, and the

universal gas constant, R.

Viscosity is a necessary parameter for the calculation of

the viscous parameter, VBAR. Viscosity is assumed to exist

at all altitudes and is determined as a function of

temperature, T:

T 3/2

(T + S)16

where

S = 110.4 1,

= I .458E+06 Kg/mK~s

At any given altitude between sea level and 700 km

temperature, molecular weight, density and viscosity can be

determined using the 1962 Standard Atmosphere. These parameters

are used to evaluate the aerodynamic forces and to integrate

the system equations of motion.

II



III System Dynamics

Evaluating Space Shuttle Crbiter trajectories and orbit

plane changes involves integrating the system's equations of

motion from a iven initial state to a final state. The equa-

tions of motion are derived by analyzing system dynamics and

applying Newton's Second Law.

Assumptions

The derivation of the equations of motion will involve

the following assumptions:

I. the earth is spherical

2. the earth is inertial

3. the orbiter is a point mass with lift and drag
acting through the center of gravity

4. no sideslip occurs

5. atmospheric wind is taken to be the rotational
velocity of the earth at orbiter's altitude.

These assumptions greatly simplify the dynamics without

detracting substantially from the credibility of the study.

The assumptions that the earth is spherical and inertial are

reasonable approximations since the skip reentry trajectory

maneuver takes a relatively short time; the time span for

such a maneuver is 27 minutes or less. This time span is not

long enough for the effects of an actual non-inertial, non-

sperical earth to produce an appreciable difference from the

simplified two-body case being studied here.

The assumption that the orbiter is a point mass with the

12
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aerodynamic forces actiin, through the center of mass is realistic

in that the orbiter would be trimmed (i.e. no pitchinp, yawing

or rolling moments) at all times during- a skip reentry maneuver.

It is also realistic to assume that no sideslip occurs.

The hypersonic velocities severely limit the configurations

of an orbital vehicle reentering, the atmosphere. This problem

is due to extremely hiih aerodynamic heating; faced by any reentry

vehicle. Aerodynamic heatini, is hijghest on surfaces of the

vehicle exposed to the freestream flow. The orbiter's primary

heat-protective surfaces are around the nose and alone the

underside of the vehicle with secondary heat-prutective surfaces

along the sides arid top. Thus the relative velocity vector

must lie alonig or as close as possible to the longitudinal

center line of the orbiter.

Trying to accurately model the upper atmospheric winds

would be extremely cumplex. Such a wind model would involve

time of day, seasons. positi(,n, etc. Incorporating, such a

model goes beyond the scope of this study; however, assumin6

an inertial atmosphere is probably not justifiable. Assuming

an atmosphere rotatini- with the earth is a sufficient wind

model for this study.

Equations of Motion

The equations of motion are derived by establishing the

appropriate coordinate systems arid applying Newton's Second

law. Two coordinate frames are used. The XYZ frame is inertial

and fixed at the earth's center. The Vre lM frame is fixed at

the orbiter's center of mass (Fig 111.1).

13
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L

MV

x

Figure 111.1. Larth-orbiter system coordinate

frames
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- he state of the system can be described by the state

variables x,y,z,and x,y,-. These quantities are evaluated

with respect to the inertial frame.

The V rML frame is defined in terms of the state variables.

re l

= Vel

MV X 7
ree

L M x V
rel

where

x1 + yj + zk (m/s)

F=xi + yj + zk (m)

= 7.292115856 x 10- k (radians/sec)

Unit vectors are denoted by the hat symbol, " , and i,j,k

represent unit vectors for the YW frame. The angular velocity

of the earth is constant and denoted by w. Thus V re is the

velocity of the orbiter relative to the atmosphere, N estab-

lishes a local horizontal and I completes the right-hand

coordinate frame.

Aerodynamic forces are easily expressed in the body-

centered frame (Fig 111.1).

Lift = (coso L - sine M)

Drag = -.bVrel

where

X = magnitude of the lift vector,

8'= magnitude of the drag vector

bank angle of the orbiter

15



The unit vectors can be expressed in the XYZ coordinate

frame. A transformation matrix is needed to express the forces

actine on the orbiter in terms of the inertial frame. The

unit vectors, V relM1, provide a means for transforming an

aerodynamic vector in the body frame to the inertial frame

because the unit vectors are expressed in the inertial frame.

Thus a transformation matrix, T, can be formed by using- the

unit vectors as column vectors.

V rel'

Expanding the defining equatirons for the V rel ML coordinate

frame starts the derivation for the transformation matrix.

VI = (x - +y)i (y + wx)3 + zk

= avi + bvj + cvk

M = VreiX F (bvz - Cvy)i - (avz - cvx)j + (ay - bvx)k

= ami + bmj + cmk

= "X-V rel vbm - bvcm)i - (cvaj, - avcm)j

+ (bvam - avbm)k
A A A

= ali + blj + ck

Thus the transformation matrix becomes

av/sv am/sm al/s 1

T = bv/s v  bm/sm bl/S 1

Cv/Sv Cm/Sm cl/s 1

where

Si = (ai2 + b 2 + Ci2) = v'm'l

16



The equations of motion can be reckoned using Newton's

Second Law.

where

S(F ravity)XYZ + (Lift)xyZ + (Drag)xyZ

("'ravity)XYt'. f(Lift)v1 i + T(DraC)vIL

- 'Mm ~"AAwherea(F ) - ' (xi - yJ + zk)

where

GM = earth's gravitational parameter

m = mass of the orbiter
..A .. A *./A

a xi + yj + zk

0
(lift)V~h - sin

cos

(Drag) VMI0

0

By substituting into Newton's Second Law the equations of

motion can be found. In component form the equations are:

(6M/r3)x + 4 (Cos - sn ) vst 1 mm Msv

3 b1  bm
y - (uM/r3)y + L (coso - - sin, ) V -

• 3,c 1  cm mv
('M/r3 )z + X-Cs0 l s - c Sm mm 1I S m s V

17
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" I
These three second-order equations can be broken down to six

first-order equations by redefinil, the state variables.

Wi X

w2 -=Y
w 2 y
w = Z

W4

w5
5 6y

The equations of motion become

w! =w 4

w2 W 5
w3 W w6

w4  (G~ 3)w al am Z av6- )WI + (Cos - sin -- ) - -

3 bb5' G/3)2 + b Sm bSv

= 3 - - sin _ - ) _--
r)w2 + ( cos Sm m S v

C Cm v
= - (M/r3)w 3 + (cos - - sin63 Ms I 1 5 W m s v

The a's, b's c's and s's are also functions of the new variables.

These six first-order equations are integrated through time

by the CC6600 differential equation integrator, GDE.

Orbit Plane Change Equation

The change in orbit inclination, or orbit plane change,

due to the skip reentry maneuver is determined by comparing

the states of the system before and after the maneuver. The

angular momentum vector, H, involves the complete state of the

18
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orbiter and it is also normal to the orbit plane. Thus the

orbit plane chancre can be found by examining how the anticular

momentum vector chanTes direction (Fig 111.2). The inner

product for two vectors is well-suited for this problem.

Let the subscripts i and f denote initial and final states

respectively.

Hi H. 117,il TJH-co

Hi and H indicate the magnitudes of the initial

and final angular momentum. Further,

A i = orbit plane change

Rearranging•

1 ( F ixvi) • (?fXVf)
i Cos I ix Vi IrfX VfI

The plane change calculation is easily carried out using the

above equation.

Integrating the equations of motion to a desired time

and evaluating the change in the state of the system at this

time represent the fundamental dynamics of theproblem.

Evaluations of the aerodynamic forces and the performance

index are discussed in the following chapters.

19



~i7~ Vf

Hff

vi Ai

Figure 111.2. Initial and final ang~ular momentum

vectors
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IV Sce Shuttle Crbiter Aerodynamics

The orbiter is assumed to be a point mass with the

aerodynamic forces, lift and drag, acting through the center

of mass. This assumption simplifies the orbiter aerodynamics

to evaluating only lift and drag.

Lift and drag forces are dependent upon the state of the

system; thus the forces must be constantly evaluated during

the integration of the equations of motion.

X = ,'~x~y~) C~x~yz~x~~z) 2re x,y z,x,y,z)
/(x,y,z) CL(X,y,z,x,YZ) Vre 1

= 2 /D (xyz) C Vrel ~x,y,z,x,y,z)

The atmospheric density, /P, is obtained from the model atmos-

phere and Vrel is obtained continuously during the integration

of the equations of motion. This chapter explains how the

lift and drag coefficients, CL and CDo are determined.

Orbiter Aerodynamic Data

The orbiter aerodynamic data was obtained from the Space

Shuttle reentry office of NASA in Houston, Texas. The infor-

mation included lift and drag coefficient tables as functions

of angle of attack, c, and the viscous parameter, VBAR (see

Table IV.A). Also included in the data package was the infor-

mation necessary to evaluate VBAR and an explanation of how

the lift and drag coefficients for the orbiter were derived.

The viscous parameter is a subscale-fullscale simulation

parameter based on the freestream properties Mach number, M.,

Reynolds number, Re, and Temperature, T. VBAR is defined as

21

- -l



VBAR = M(C/Re)' (Ref 4)

where

C. ( /1.)k I -- 122.1 x 10 "( 5 / E)-

T + 122.1 x 10-( 5/T ')

with

T' T (.468 + .532 (Iw/r) + .195(f-1)/2 M 2

K = .5

Tw = 2000 F

= 1.15

C is the proportionality factor for the linear viscosity-

temperature relationship. K is an empirical constant. The

specific heat ratio, Y, is assumed to be constant for the

flight conditions analyzed. A constant wall temperature, Tw,

is also assumed for the orbiter.

The freestream Mach number is the ratio of Vrel tP the

freestream speed of sound, a,. The speed of sound is assumed

to exist at all altitudes and can be evaluated using the

following equation:

a., = ( R IM/Mo )
2

where

R = 8.31432 x 10 3 N-m/k6 K

The free-tream Reynolds number is based on the orbiter

length, s = 32.77 in.

Re = A Vrels/A

Kinetic viscosity, A, is assumed to exist at all altitudes

and is obtained from the model atmosphere.

22
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For values of VBAR greater than .01 and less than .08

the lift and drag coefficients have been determined experi-

mentally. For values of VBAR g;reater than .08 to its maximum

value of 5.2, the coefficients are determined analytically

using the Lockheed Empirical Bridging Formula (Appendix A).

This formula bridg'es the transitional flow regime between

continuum and free-molecular flow regimes.

These tables of aerodynamic coefficients are based on

an assumed nominal reentry trajectory and therefore nominal

velocities. Thus, VBAR is a parameter dependent primarily

on temperature (i.e. altitude). Typically, the extreme values

of VBAR, .01 and 5.2, correspond to altitudes of 67 km and

190 km respectively.

Given the state of the system, VBAR can be evaluated.

With VBAR and the angle of attack available, the corresponding

aerodynamic coefficient can be found. The data is tabulated

at discrete values of angle of attack and VBAR. A four point

bivariate interpolation scheme is employed to evaluate the

coefficients for angles of attack and VBAR's between the

discrete data points. The bivariate interpolation scheme

is a second-order approximation (Appendix 3).
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V Naximum lift-to-Drap, trajectories

Analyzing maximum lift-to-drag L/D trajectories serves

two purposes: first, such an analysis will indicate whether

or not a skip turn reentry trajectory is profitable when

compared to a rocket maneuver outside the atmosphere; and,

second, the analysis will also indicate how lare an orbit

plane chang-e can be expected.

It should be noted here that this analysis is different

from the optimal control method explained in the next chapter

in that energy lost to air drag is not minimized, nor is the

change in orbit inclination maximized. Maximum L/D analyses

are indicative of the performance of any aerodynamic vehicle.

A maximum L/D trajectory implies that at each point along

the aerodynamic maneuver, the orbiter is oriented to the angle

of attack corresponding to the maximum L/D ratio.

Velocity Performance Index

In order to effect an orbit plane change in space, a

rocket burn directed outside of the orbit plane is necessary.

Thus, given an initial orbit and a desired plane chang;e,

a corresponding change in velocity, AV, can be calculated.

The equation for this computation is:

AV = 2V i sin (i/2)

where

V i = velocity prior to the maneuver

Ai = orbit plane change

28
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V-f

Vf

Fig;ure V.1 Velocity Vector Geometry

[his equation assumes circular initial and final orbits with

equal initial and final velocities.

Using a skip turn reentry maneuver to effect an orbit

plane change results in energy lost due to air drag. Because

the maneuver starts and ends at the same altitude, the energy

lost is all kinetic energy, i.e. the maneuver results in a

AV. The question of whether or not the aerodynamic maneuver

is profitable can now be properly posed: Given an orbit plane

change, is the &V required for a rocket maneuver,A VR , greater

than the AV required for an aerodynamic maneuver, AVD? (ir

asking the same question differently: For a given orbit plane

change, is the ratio AVR/AVD g reater than I? If the answer

to these questions is yes, then an aerodynamic maneuver is

profitable.

The ratio VR /VD is called the velocity performance

index. The maximum L/D analysis compares the velocity perfor-

mance indices for bank aniles varying from 0 to 90 degrees

at perigee altitudes of 95, 90, 85, 80. 75 and 70 km. rhese

perigee altitudes correspond to initial conditions nelglect int
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- the atmosphere. Actual perij,,ee altitudes will vary from

those listed above due to atmoslheric effects.

Discussion of Results

wo different types of g-raphs are shown in the following

figures: velocity performance index vs. bank angle, and

orbit inclination charwe vs. bank angle.

Ihe velocity performance index for perigee altitudes

less than and equal to 85 km exceeds one, as shown in Figures

V.4 through V.7. 'the bank an,.le at which the velocity perfor-

mance index becomes greater than one represents the minimum

bank angle for the corre6poiding, perigee altitude at which

the aerodynamic maneuver becomes profitable over the rocket

burn maneuver it space.

For a perit,,ee altitude otf 75 kin, the graph ends at 70

degrees bank angle Fi, V. 6 . I f tLhe bank. angle exceeds

70 degrees, the acrodvialdic maiieuver i no longer a skip

maneuver; it becomes a tttl reentry %.here the trajectory

does not leave the atmosphere. A similar situation occurs

for bank angles greater than 50 de&,rees for a perigee altitude

equal to 70 km. Altitudes lo,,s than 70 km are not within the

altitude regime for which orbiter aerodynamic data is available.

Changes in orbit inclination are insignificant for periee

altitudes greater than 80 km (Fig V.8 throulh V.13). Maximum

obtainable orbit inclination changes for perivee altitudes

less than 80 km are approximately .8 degrees. Velocity lost

due to air drag is another parameter of concern. Typically,

velocity lost to dra1 while obtainini, .8 degrees orbit

30



inclination chan ,e ranies fromt 60 (/s to 80 m/s. If 300 m/s

is an acceptable Ve!lociLy loss, then orbit inclination changes

t.reater than 1 depree are obtainable.. ibis can be accomplished

by orienting the initial orbit such that the orbiter enters

the atmosphere earlier and leaves later. An alternative would

be to perform the desired orbit inclination change over a

series of skip turn rentry trajectories, i.e. a multiple

orbit revolution maneuver.
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VI (jpt imal Control Technique

Back,, round

(,btainin, a chatn e in orbit inclination either an aero-

dyilamic turn or a rocket burn in space results in a penalty.

In both types of maneuvers the penalty is energy that must

be supplied L; the system in order to obtain the desired inclin-

ation change without changing, the other orbit parameters. The

most efficient method to change an orbit inclination outside

the atmosphere is known3 fire the rockets in a direction

perpendicular to the orbit plane. Gn the other hand, the

optimum angle of attack and bank ang'le control histories for

an aerodynamic turn to effect a change in orbit inclination

are not easy to determine and are presently unknown.

An aerodynamic skip turn reentry maneuver results in

energy lost due to air dragt. In order to change only the

orbit inclination, the energy lost to air drag must be made

up. This is accomplished by acceleratin,., Lhe orbiter in the

new orbit plane. Thus, an optimum aerodynamic maneuver requires

that the energy lost to air drag be minimized for a specified

change in orbit inclination.

Suboptimal Control

Suboptimal control theory, also called second-order

parameter-optimization, is a second-order method which assumes

that optimal controls can be approximated by polynomial functions

of time (Ref 5, 6). For this study the control variables are

angle of attack and bank an.le. The approximating polynomials

44

[L I



are the Chebyshev polynomials which are chosen because they

are orthogonal on the nondimexnsional time interval, zero to

one. the Chebyshev polynomials till insure that the matrices

in the suboptimal control scheme do not become sii,,ular due

to possible linear dependence of the polynomials.

In essence, the suboptimal control problem is to find

the ccefficients of the cont rol polynomials, subject to the

differential constraints (equations of notion) and the pre-

scribed boundary conditions (initial -)tate, final altitude

and orbit plane cwhn , which minimize the performance index.

List of Symbols

B = vector of control polynomial coefficients

= scalar performance index

E = vector of prescribed fiinal conditions

= vector of Lagrange multiplier constants

= variational derivative

Ihis study uses the subscript notation to denote partial

derivatives, i.e. GB indicates 'he partial derivatives of

the scalar performance index with respect to the polynomial

coefficients.

Suboptimal Control Formulation and Proce.dure

An augmented performance index, F, can be formulated

by combinin, the performance index G with the equality

constraints E.

F(B,)= (;(B) + L(B)
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The I. aranie multi l) iersA , are introduced to insure that

linear dependence does riot occur. mhe conditions to be satis-

fied at an extremal point are:

F3 (B,) 0

E(B) 0

The numerical procedure starts with guessed values for B and

X. FB and E are linearized about these guessed values.

S F BT FBB&B + EB SX

SE = S13

These expressions yield SB and SA which result in FBT and E

movingj toward zero. Further, since ( ) = ( )new - ( ) o d

and it is desired that ( ) 0, thennew

&F -I' PFB B

S = -QE

where P and Q are scalar factors which control the convergence

process. P and Q take on values from near zero to one.

Combining the previous equations and solving for SB and SA

yields;

A =(EBFBB ) (-PEBFBB FB + QE)

SB=-FBB (BPFJB  + B)

where

F B GB t AEB
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FBB B 1B + A BB

These partial derivatives are evaluated numerically using

central differenciiiu, techniques.

In summary, the aloritlm for the second-order suboptimal

control scheme is as follo~s:

1. Guess B and A

2. Integrate the system equations of motion from an

initial state to a final state

3. Compute E. EB , FB, F B

4. Select P arid Q

5. If FB = 0, FBB is positive definite, and 6B is small,

the method has converged

6. If convergence criteria have not been satisfied,

set B = 13 6 b and A A + SX and iterate procedures

2. throug~h 6.

'The procedure is straightforward, but some discussion is

necessary concerning" initial ,,uesses for X and B and selecting

P and Q.

A good initial g, uess for A can be obtained from a gradient

approach. Flhe equations for the I.radient method are obtained

by settin , FBB = I arid 8,\= 0. By manipulating the previous

equations, an expression for A can be found:

A = (EB t r )B (Q/[)L - EB GBT

The iteration procedure can be started with small values

for P and Q (approximately .1). when it is apparent that the

procedure is convergint,,, I' and Q can be increased. As soon as

47
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the end conditions are satisfied, Q should be set equal to

one in order to preserve the final conditions.

The guess at the coefficients contained in the B vector

must be close to the actual optimal solution. The method

used in this study is to initially consider the case for

zero plane change with a constant angle of attack. Thus

only one coefficient and one control polynomial need be con-

sidered. The optimal constant antle of attack is a good initial

e7uess for a linear angle of attack polynomial. When the process

converges on the optimum linear angle of attack polynomial,

this resulting polynomial is used as an initial guess for

a quadratic control polynomial, and so on until the next

higher order polynomial does not substantially change the

control history. The next step involves specifying a small

chang-e in orbit inclination and making a guess at a constant

bank angle history while using the previous optimal angle of

attack polynomials. Once the process converges for this new

B, the suboptimal control method is continued with a constant

bank angle history while specifying successively larger changes

in orbit inclination until the end conditions cannot be met.

Using this B as an initial guess for the largest orbit inclin-

ation change, higher order polynomials for the bank angle

control can be found in a manner similar to that described

previously for the angle of attack control polynomial.
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Vl[ Conclusions and Recommendations

* Maximum L/D Analysis

The analysis and consequent results in Chapter V, though

approximate, indicate that a skip turn reentry maneuver is

profitable for all perigee altitudes between 70 and 95 km.

The resulting changes in orbit inclination are approximately

.8 degrees; however, larger changes can be achieved if the

trajectory of the orbiter allows for more time spent in the

atmosphere.

Suboptimal Control Analysis

Most of the time spent on this study concerned the optimal

control problem which, unfortunately, yielded virtually no

results. The problem considered in this study was: Find the

angle of attack and bank antle control histories that minimize

the work done by air drag while meeting, the specified end

conditions, orbit plane chanjre and final altitude. Though

this problem is certainly relevant ard important, it is poorly

suited to suboptimal control. Three major problems occurred

during the course of this study. First, the final time had

to be specified. A good value for the time could be found

in the case of zero plane change: the time the orbiter spent

between entering and exiting the earth's atmosphere. However,

once an orbit plane change was specified, a good value for the

time was no longer available. Second, the final altitude

had to be specified. [his problem came into focus when it was

49
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II
discovered that the suboptimal control SOCHme Was causirlp, Ole

orbiter to lose ener, y just so the final altitude constraint

could be met. The unsolved question here is: How is a final

altitude established which is compatible with the desired

orbit plane chan_,,e

lhird, at tihe hi,,her altitudes, 95 and 100 kin, the change

ini the performance index with respect to the control polynomial

coefficients was on the order of 10- 2 when the coefficients

started approachint,, the optimal solution. This led to diffi-

culties in evaluatint the second-order partial derivatives which

are necessary for the second-order suboptimal control scheme.

The problem can be restated so that these difficulties

are alleviated. The restated problem followst Find the

angle of attack and bank anile time histories that maximize

the change in orbit inclination (minimize -Adi) for a given

acceptable loss in energy. instead of integrating the equations

of motion to a fixed final time, integrate to a final altitude

(equal to the initial altitude). Thus the loss in energy due

to drag would be all kinetic energy. This will eliminate the

first two difficulties encountered with the current problem.

In order to alleviate the third difficulty it is recommended

that the analysis be restricted to 90 km perigee altitude and

lower. The probable difficulty with this newly-proposed

problem will be establishing typical losses in energy that

must be prescribed. This problem is not insurmountable.

Typical values for energy loss can be found using an analysis

similar to that formed in Chapter V of this study.
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Due to the importance and interesting, nature of a study

such as this one, it is recommended that opLiMum skip turn

reentry trajectories be investijated further. The newly-

posed problems stated previously are relevant and also %arrant

further and more accurate investigatiun.

I
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Appendix A% Lockheed Bridpinp, Formula

The Lockheed Bridging Formula is used to evaluate the

aerodynamic force coefficients for the Space Shuttle Crbiter.

The formula bridges the transitional flow regime from continuum

flow to free-molecular flow. The formula is:

C trans ~Ccorit + (C F. m. C colt) sifn( 7rT(A + B Iol oKn))

where

C cot viscous force coefficient values at VBAR =0.08

C FM. - viscous force coeffi~cient values at VBAR =5.2

(free-molecular flow)

n 2

A 3/8

B 1/8

Kn Knudsen number = A L e

L ref 12.059 meters

X mean free path =Ri/P (2 No- 2

R =universal gas constant =8.314 x 10 3 N-rn/kj K

T=temperature

P =pressure

N = Avoeadro's number = 6.022 x 10 26 kmol 1

0= effective molecular collision diameter

-3.65 x 1O- to meters
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Apnedix b: bivariate Lnterpolation

The four point bivariate interpolation scheme is used

to find the aerodynamic coefficients between the tabulated

values. [he interpolatint. tormula is:

f(x.y) f(x o + x, Yo * y) ( ( p)(l - q) f(x o ,yo )

+ p(l - q) f(xl,yo) + q(1 - p) f(xo,Y l )

" pq f(xl,Y1 ) + 9(h 2

where

p - Sx/Ax

q 8 y/ y

The four point interpolation scheme can be show graphically:

f(xoY) *f(x 1 ,y 1 )

of(x,y)=f(xo x ,Y + Y)

f(x0 1yo ) f(x1 ,Yo)

where

A x x 1 -x o

A y -Y

X X - XO

y y - Yo

For this study, x and y correspond to VBAR and angle of

attack respectively.
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maximum chang-es in orbit inclination achieved aerodynamically were
approximately .8 deprees. Thie second type of analysis considered
the optimal control problem fur a skip reentry trajectory. The-I
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Block 20.

specific problem poued was; Find the optimum anj,le of attack ard
bank anvgle controls which minimize the amount of work done by dra ',

for a specific chanj,,e in orbit inclination. No results here
obtained from this analysis due to the problems encountered when
the optimization technique was applied to the specific problem.
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